Concessive \textit{at least}, illustrated in (1), has been observed to give rise to a ‘settling for less’ effect.

(1) \textit{Wenigstens liegt das Hotel zentral}.

‘At least the hotel is centrally located’.

It conveys that the speaker considers the prejacent not to describe the optimal, most desirable state of affairs, but that it does not describe the worst, least desirable state of affairs either (Kay 1992, Nakanishi & Rullmann 2009, Grosz 2011, Biezma 2013). Nakanishi & Rullmann (2009) (N&R) propose that concessive \textit{at least} operates on propositional alternatives that are ranked according to the preferences of the speaker and requires the prejacent to be neither the highest nor the lowest ranked among the alternatives.

In this talk, I show that N&R’s analysis falls short of capturing several aspects of the meaning of concessive \textit{at least} in English and German. First, while the ranking of alternatives reflects a preference ranking, the ranking is not determined by the preferences of the speaker. Second, N&R’s analysis doesn’t do justice to the intuition that the prejacent has to be desirable to the speaker. Third, concessive \textit{at least} does not only convey information about the desirability of alternative propositions, but also about their truth value. I discuss each of these issues in detail and propose amendments to N&R’s analysis, which result in the following lexical entry for concessive \textit{at least} (where $\mu_{\text{DES}_{s,w}}$ is a measure function that maps a proposition p onto a degree of desirability, which represents how desirable p is to the speaker s in world w, and $N(S_{\text{DES}_{s,w}})$ is the neutral interval of the corresponding scale):

(2) \[
\llbracket \atleast w \rrbracket (C) (p) \text{ is defined iff} \\
\begin{align*}
(i) & \quad \forall r, r' \in C [r' > r \rightarrow \mu_{\text{DES}_{s,w}} (r') > \mu_{\text{DES}_{s,w}} (r)] \\
(ii) & \quad \exists q \in C [q > p] \\
(iii) & \quad \exists q \in C [q < p] \\
(iv) & \quad \forall d \in N(S_{\text{DES}_{s,w}}) [\mu_{\text{DES}_{s,w}} (p) > \mu_{\text{DES}_{s,w}} (d)] \\
(v) & \quad \forall q \in C [q > p \rightarrow q(w) = 0]
\end{align*}
\]

If defined, $\llbracket \atleast w \rrbracket (C) (p) = 1$ iff $p(w) = 1$